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Abstract - The mathematical concept of adjoint operators is applied to the heat transport equation and an 
adjoint equation is defined with a detector function as source term. The physical meaning of the solutions for 

the latter equation is outlined together with an application in the field of perturbation analysis, 

NOMENCLATURE 

specific heat capacity [J/(kg 9 K)] ; 
unit normal vector; 
operator ; 
adjoint operator ; 
heat source density [W/m”] ; 
position vector; 
detector reading; 
surface [m2] ; 
time [Is] ; 
temperature [K] ; 
adjoint function; 
velocity vector [m/s] ; 
volume [m3]. 

Greek symbols 

heat-transfer coefficient [W/(m” - K)] ; 
detector efficiency; 
heat conductivity [W/(m * K)] ; 
density [kg/m31 ; 
heat flux density [W/m”] ; 
arbitrary function. 

Subscripts 

:: 
boundary ; 
final ; 

4 initial; 

0, unperturbed; 

s, source ; 

th thermometer. 

INTRODUCTION 

IN CALCULATIONS on neutron transport in nuclear 
reactors the use of the mathematical concept of so- 
called adjoint operators has proven to be very useful 
for certain types of problems. Neutron transport 
problems are often characterized by their complexity, 
mainly because of the number of variables defining the 
neutron field (position, velocity, direction of move- 
ment and time) and the geometrical complexities 
which occur in practice. Even with modern computers 
it is only possible to calculate approximate solutions 
and any technique to increase the calculational ef- 
ficiency is welcome. Against this background the 
adjoint calculational techniques have found wide- 
spread use in reactor physics, for instance in such areas 

as variational techniques for constructing approx- 
imate solutions [l], perturbation techniques for 
calculation of effects of small parameter changes [1,2] 
and efficient techniques for Monte Carlo calculations 
[3]. As a result, the technique itself has developed 
considerably and may find fruitful applications in 
other areas of physics. In connection with research on 
reactor dynamics, the present authors have applied the 
adjoint technique to the heat-transport equations in 
order to calculate temperature and neutron density 
fluctuations in a reactor, which is an application in the 
field of perturbation theory. Recently an application in 
the area of sensitivity theory for thermal-hydraulics 
problems was published, also emanating from the 
nuclear reactor field [4]. 

In the next paragraphs the principle of the adjoint 
technique is outlined and an example of an application 
is presented; this sample problem has been chosen as 
simple as possible in order to focus on principles. 

THE ADJOlNT HEAT TRANSPORT EQUATION 

We start from the heat transport equation, which 
reads in usual notation: 

PC;= -pcv-VT+V*IVT+q, (1) 

where the space and time variables have been omitted 
for the sake of convenience. Equation (1) can be 
written as 

OT= q, (2) 

where 0 denotes the transport operator. The solution 
T should satisfy boundary conditions and initial 
conditions, imposed by the physics of the system under 
consideration. 

We now introduce a detector function ~(r, r) which 
gives the sensitivity of a ‘thermometer’, positioned in 
the system, such that the reading of the detector is 
given by: 

tr 
R = (E, T) = 

s I 
dt dr&T, (3) 

‘i V 

where ti and tl are the initial and final time of the time 
interval under consideration and V the total volume of 
the system, and where a parentheses notation for 
integration over phase space is introduced. 
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Suppose we can find an operator O+ that satisfies 
the following relation : 

(ti, 07-J = (0 + !b. 7-h (4) 

where $ should satisfy boundary conditions to be 
specified, but remains arbitrary for the rest. We shall 

call O+ adjoint to 0. Then we can define an adjoint 
function T+ that satisfies the equation: 

O+T+ = I:. (5) 

From equations (2) (4) and (5) we obtain: 

R = (I:, T) = (y, T+). (6) 

From this it follows that the function T’ is a measure 

for the influence exerted on the temperature in the 
detection region by an amount of heat injected into the 
system. This becomes even more apparent by choosing 
a simple detector function : 

E = c,S(r - rth) .6(t - tth) (74 

and as source term a heat injection pulse at time t, and 

position rs : 

q = q&r - r,) d(t - ts). U’b) 

In equations (7a) and (7b) 6 denotes the Dirac delta 
distribution. The particular choice of detector function 
implies that at time t,,, the temperature in position rth is 

read. Substitution in (6) gives: 

qsT+(r,, rs) = a,hT(r,h, rth). (8) 

In other words : the function T+ gives the temperature 

response in Kelvin per Joule. One is tempted to call T+ 

an “adjoint temperature” but it should be stressed that 
such a nomenclature is not in accordance with its 

physical dimension. 
For the sake of simplicity we restrict ourselves 

further to stationary cases, for which the regular 
equation reads : 

_ pcv.VT+ V.AVT+ y = 0 (9) 

and try out as adjoint equation: 

V.j>cvT+ + V,AVT+ + i: = 0. (10) 

The dimension of T+ is Kelvin per Watt, in case that e 
is a thermometer. 

We multiply equation (9) by T’ and equation (10) 
by T, subtract and integrate over the total system 

volume. In order to satisfy equation (4), both the 
convection terms and the conduction terms should 
cancel. For the conduction terms we get: 

s dr{T+V.AVT- TV.iVT+) 
Y 

= dr{V .(T’i.VT- TAVT+)) 

= s dS{T+lVT.n - T/ZVT+ .n}, (11) 
s 

where the surface integration is over the bounding 
surface of the system, on which the boundary con- 

ditions are imposed ; n is a unit vector in the direction 
of the outward normal on the surface. The last step in 
the derivation above is based on Gauss’ divergence 
theorem. 

By appropriate choice of boundary conditions, the 
two terms in (11) will cancel. If, for instance, the direct 
boundary condition is : 

(- AVT.n), = a&, 

we should choose: 

(12.a) 

(- IVT+ .n)b = aTc, (1%) 

The subscript b refers to the boundary of the system. 
The heat transport equation (1) determines the 

temperature distribution, except for a constant which 
can be chosen arbitrarily. If we take as reference value 

a constant temperature of the surroundings of the 
system, such that T is the difference with this surround- 
ing temperature, a in equation (12a) denotes the 

coefficient of heat transfer to these surroundings. In 

case the system is imbedded in an infinitely good heat 
conductor, the boundary conditions (12a) and (12b) 

can be written as Tb = 0 and Ti = 0. The conduction 

operator is said to be self-adjoint. because both 

operators and boundary conditions are identical in 
regular space and adjoint space. 

For the convection terms the forementioned pro- 
cedure gives : 

I dr{TV .pcvT’ + T+pcv .VT] = drV.pcvTT+ 
Y J’ ” 

= s dSpcvTT+ ‘n, (13) 
s 

where again the last step is based on Gauss’ theorem. 
This term applies only to stream tubes ; Tpcv . n is the 

enthalpy flow density. 
Leaving re-entrant flows out of discussion, injection 

of heat at the exit of a stream tube can have no 
influence on a thermometer reading inside the system 

and the boundary condition is: 

T+=O forv.n>O. (14) 

The integral over surfaces with entrant flows remains 
and depends on the boundary condition of T. In case 
that the entrant flows have the temperature of the 
surroundings, viz. T = 0, the surface integral cancels. 

We conclude that the convection operator has no 
adjoint in the complete sense of equation (4). Equ- 
ations (9), (10) and (13) can be combined to give: 

{“draT= IdrqT’ - isd,SpcvTT’ .n. (15) 

The last term accounts for convective transport from 
the surroundings and can be incorporated in the 
second term by defining a surface heat source density : 

Gurface = pcvT.n. (16) 

Finally it should be remarked that adjoint operators 
can only be defined for linear operators, which in the 
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present context implies that p, c and v may not depend For the unperturbed state we have: 
on T. For an extension of the adjoint technique to 
time-dependent phenomena, we refer to the reactor 
physics literature listed in the references. 

R, = bdrcq = [“drqT+ - jsdStT+pcvn. 

(20) 

PERTURBATION ANALYSIS Subtraction gives : 

The adjoint function T+ is a measure for the 
influence of heat injection on a fixed temperature 
detector. The heat injection and the detector may have 
arbitrary spatial distributions. This means that the 
quantity T+ is very useful for the calculation of the 
effect of system perturbations. In order to illustrate 
this, we assume that the heat conductivity in the system 
undergoes a small change 61(r) and we ask for the 
change in detector reading 6R. 

We define i = i, + 61 and T = To + ST, where L, 
and To refer to the unperturbed state or reference 
system. The equations pertinent to this problem read : 

6R = jvdrcBT= - j~dr6iVTVT+ 

- dSGT. T+pcv .n. (21) 
s s 

Neglecting the second-order term 6dV6T in this 
equation and putting 6T = 0 on entrant flow surfaces, 
gives the first-order perturbation expression : 

6R = - 
s 

d&VT,. VT+. (22) 
V 

- pcv.VT+ V.iVT+ q = 0, (17) 

boundary: IVT.n = - aT, (174 

V.pcvT+ +V.&VT+ +e=O, (18) 

boundary : &VT+ .n = - aT. (184 

In line with the procedure described in the preceding 
paragraph it follows : 

R = j”drEr= j”drqT+ - j~drHVTVT+ 

This technique can be applied to perform sensitivity 
analysis on system parameters, i.e. to answer the 
question how the temperature in a certain point or 
region of a system varies in case the system parameters 
are varied. With the help of equation (22) one can for 
instance find the optimum positioning of isolating 
material in a system in order to attain a maximum 
temperature increase in the detection region, as is 
shown in the following example. 

dSTT+pcv.n. (19) 

For illustration purposes computer calculations 
were performed on a two-dimensional purely con- 
ductive system as shown in Fig. 1; the system is 

a 
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FIG. 1. Configuration of sample problem. 
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- distance from top boundary [cm] 

FIG. 2. Distribution of temperature T and adjoint function 
T+ along the line a-b of Fig. 1. 
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FIG. 3. Distribution of temperature Tand adjoint function 
T+ along the line c-d of Fig. 1. 
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infinitely long in the direction perpendicular to the 
plane of drawing. The materials differ by a factor of 4 in 
heat conductivity; Q is the heat source region and Th 

the thermometer region. As boundary condition a 
fixed temperature was chosen. In Figs. 2 and 3 some 

results are shown of the solution of the regular and 
adjoint heat transport equation ; the temperature 

values are related to a heat source density of 1 W/cm3 
in region Q. If we replace a piece of material at the 
system boundary by perfect isolation material (i. = 0), 
the temperature increase in the detection region can be 

calculated in first-order approximation with equation 
(22). In this case 6). = - 100 W/m. K or - 400 

W/m . K, depending on the position of the isolation 
material. The behaviour of the integrand of equation 
(22) along the system boundary is shown in Fig. 4, 
together with the heat flux density 4 at the boundary. 
The optimal position for placement of isolation is seen 

to be position A (Fig. l), followed by positions B, C and 
D which are about equivalent, and finally position E. 

Without the analysis with the adjoint equation one 

is inclined to select positions with higher heat leakage. 

Wrongly positioned C would have been chosen and on 
the upper boundary a position too far to the left. 

Position D would have been considered much more 
important than B, whereas in fact B is slightly more 
important than D. It is also remarkable that the 
positions C and E differ by about a factor of two in 
importance, which is not expected on the basis of the 

small difference in heat flux densities. 

REFERENCES 

1. J. Lewins, Importance. rhe Adjoint Function. Pergamon 
Press, Oxford (1965). 

2. H. van Dam, On the adjoint space in reactor noise theory, 
Ann. NW/. Energy 4, 185-188 (1977). 

3. J. E. Hoogenboom, Adjoint Monte Carlo methods in 
neutron transport calculations, Thesis, Delft (1977). 

4. E. M. Oblow, Sensitivity theory for reactor thermal- 
hydraulics problems, Nucl. Pi. Engng 68, 322-337 
(1978). 

0 IO 20 30 40 0 IO 20 30 40 50 40 30 20 IO 50 40 30 20 IO 
-distance [cm] 

tap boundary right boundary bottom boundary left boundary 

FIG. 4. Distribution of heat flux density 4 and the quantity &VT. VT+ along the boundary of the system, 
starting at the top left corner, going around clockwise. 
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L’ESPACE ADJOINT DANS LA THEORIE DU TRANSPORT DE CHALEUR 

RbumC - Le concept mathematique des operateurs adjoints est applique a l’tquation du transport de 
chaleur et une equation adjointe est definie avec une fonction de detection comme terme source. La 
signification physique des solutions de la dernitre equation est degagte avec une application dans le domaine 

de l’analyse de perturbation. 

DER ADJUNGIERTE RAUM IN DER THEORIE DES WARMETRANSPORTS 

Zusammenfassung-Das mathematische Konzept adjungierter Operatoren wird auf die 
Warmetransportgleichung angewendet und eine adjungierte Gleichung mit einer Detektor-Funktion als 
Quellenterm definiert. Die physikalische Bedeutung der Losung dieser Gleichung und ihre Anwendung auf 

dem Gebiet der Stiirungsanalysis werden erllutert. 

COIIPqXEHHOE IIPOCTPAHCTBO B TEOPMM TEIIJIOIIEPEHOCA 

hHOTaunn ~ MaTeMaTHHeCKas KOHUenUHB COnpaX(eHHbIX OnepaTOpOB npHMeHeHa K ypaBHeHHBM 
UepeHoca Tenna. a conpnxeHHoe ypaBHeHHe onpenennerca c noMombro neTeKTopHoH @~HKUHH B 
KaHeCTBe HCTOBHHKB. M3naraeTcn $lH3HHecKHA CMbtCn pemeHaH nocnenHer0 ypaBHeHHs H npeeo- 

flHTCR npHMep ACnO,tb30BaHHa 3THX pemeHHH B TeOpHH 803MymeHHfi. 


